1.增加插件
将插件hadoop-eclipse-plugin-1.0.4.jar放入/usr/lib/eclipse/plugins目录下
(完成后重新启动eclipse)[插件存放路径视eclipse存放位置而定]
2.配置hadoop的安装路径
eclipse中
window—preferences,在左边栏中找到Hadoop Map/Reduce,将hadoop的目录设置为hadoop的安装目录
3.建立MapRedece工程
创建一个MapReduce Project,点击eclipse主菜单上的File—New—Project,在弹出的对话框中选择MapReduce Project,之后输入Project的名
4.建立MapReduce程序
就和建立普通的java程序是一样的
package com.sun.mapreduce;
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
public class WordCount {
public static class Map extends Mapper<LongWritable, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException{
String line = value.toString();
StringTokenizer tokenizer = new StringTokenizer(line);
while (tokenizer.hasMoreTokens()) {
word.set(tokenizer.nextToken());
context.write(word, one);
}
}
}
public static class Reduce extends Reducer<Text, IntWritable, Text, IntWritable> {
@Override
public void reduce(Text key, Iterable<IntWritable> values, Context context)
throws IOException, InterruptedException {
// TODO Auto-generated method stub
int sum = 0;
for (IntWritable val : values)
sum += val.get();
context.write(key, new IntWritable(sum));
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = new Job(conf, "wordcount");
job.setJarByClass(WordCount.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
job.setMapperClass(Map.class);
job.setReducerClass(Reduce.class);
job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
job.waitForCompletion(true);
}
}
5.执行程序
执行程序时要附加一定的参数
点击Run-run configurations ,在Arguments中填写参数,参数分别为输入文件的目录 输出文件的目录
例如/home/asheng/hadoop/in /home/asheng/hadoop/out(in目录下应该放置需要分析的文件,out目录不需要手工建立)
设置完成后点击Run即可,通过控制台可以观察运行状态,具体的运行结果在out目录下
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。